If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5a^2+44a+32=0
a = 5; b = 44; c = +32;
Δ = b2-4ac
Δ = 442-4·5·32
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44)-36}{2*5}=\frac{-80}{10} =-8 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44)+36}{2*5}=\frac{-8}{10} =-4/5 $
| 15b^2-32b-7=0 | | 12x-6x+186=84+12x | | -10-3(2x+1)-8-1=0 | | 6x-1=5x+11 | | 7=8-b | | 14a^2-19a-40=0 | | -2=0.8n. | | 3(2-2y)+4y=-4 | | 35,000=10,000(1.09)5x | | X+2=3x+1/2 | | 13.55+0.07h=14.05-0.08h | | 5x-(4x+6)=21 | | -6x-11=47 | | -3m+1-13m=5 | | 24.50x+22=47+18.25x | | -4x+3-5-2=4+6-2 | | (7x+4)(x−6)=0 | | 10x-4=20x-10 | | -4x+5(-x-11)=17 | | 3x+16=8x+19 | | 15x^2+8x=-1 | | -0.75+7c=2.80 | | 150m-100m+48500=50750-200m | | x^2−7x+1=−5 | | 15/25=m/4 | | 150x/3=0 | | 2x+6=(-4) | | 150m-100+48500=50750-m | | -7/4v+4/5=7/8 | | 4(4.5-0.5x)+3=3(4.5-0.5x)+x | | -0.1x+3.74=-0.3x+0.74 | | 5c-4c+c-3c=0 |